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S U M M A R Y  

In order  t o  describe the  propagation of high energy solar protons 
in t he  in t e rp l ane ta ry  medium, the  k i n e t i c  equation is applied in t h e  Fokker- 
Plaack approxination. 

Analysis is performed of  the s o l u t i o n  of t h i s  equation SO ae t o  
a s c e r t a i n  the conditfons of observation of s t rong  anisotropy i n  the angu- 
l a r  d i s t r i b u t i o n  of r e l a t i v i s t i c  protons generated during solar flares. 

It is obtained from the  comparison of t h e o r e t i c a l  r e s u l t s  with the  
observation d a t a  on the  flare of 4 H a y  1960 t h a t  the d i f fus ion  c o e f f i c i e n t  
D i nc reases  with the dis tance f r o m  the  Sun approximately 88 r2. Near the 
t e r r e s t r i a l  o r b i t  D = 5 *lg2 cd/sec .  

* *  

As is w e l l  known, ce r t a in  f l a r e s  ind ica t e  a s t rong  anisotropy 
i n  the angular d i s t r i b u t i o n  of hish energy s o l a r  protons i n  t h e  i n i t i a l  

s tage  of t h e  flare. This  means t h a t  protons,  reaching the  Ea r th  in t h a t  

period, undergo no sub6 tan t i a l  deviations.  In t h i e  case the d i f fus ive  ap- 
proximation is inappl icable  and t h e  use of a m o r e  general  equation is 
required.  

Heasurements of in te rp lane tary  magnetic f i e l d  on Mariner-2 show 

that  t he re  e x i s t s  near  the t e r r e s t r i a l  o r b i t  a magnetic f i e l d  with a mean 
quadrat ic  i n t e n s i t y  of 3 0 loo5 gauss and i r r e g u l a r i t y  dimension from l o l l  
cm and lees,  On such an i r r e g u l a r i t y  a r e l a t i v i s t i c  proton with energy 

* 0 RASPROSTRANEHII V Y S O K O E N E F G ~ I C H E S K I K H  SOLHECHI” PROTONOV V MEZH- 
PLANENTNOM MAGNTNOM POLE 
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2. 

9 3 1 0  ev s c a t t e r s  over an angle 

t h e  propagation of high energy protons i n  in t e rp l ane ta ry  medium, one may 

apply t h e  k i n e t i c  equation 3n the Fokker-Planck approximation. 

20°. Consequently, in order  t o  describe 

The present  work is devoted t o  its s o l u t i o n  when appl ied t o  a s o l a r  
flare; a t  the same t i m e ,  p r inc ipa l  a t t e n t i o n  is given the ascer ta in ing  of 

t he  condi t ions at which observation is possible  of s t rong  anisotropy i n  the  
angular d i s t r i b u t i o n  of s o l a r  protons . 

BASIC EQUATION.- We s h a l l  consider t h a t  the  in t e rp l ane ta ry  magnetic 
f i e l d  cons i s t s  of two components 

B = Bo + Bi, (1) 

where bo is t h e  r egu la r  magnetic f i e l d  t h a t  approximates large-scale  f i e l d s  
of which the  dimensions a r e  much g rea t e r  t h a n  t h e  Larmor rad ius  of the  par- 

t i c l e  ) ; B., is a uniform random f i e l d ,  which m i l l  be given by the  moments 

where Q:r, l ; m E l c  a r e  t h e  s p a t i a l  vec tor  components i n  the sphe r i ca l  system 

of coordinates ,  i = r, q, 5. An,dar brackets i n d i c a t e  t h e  s p a t i a l  averaging. 

The magnetic f i e l d  iE co.:sidered s t a t iona ry .  
YJe s h a l l  denote b-T k the  uni tary vec tor  i n  the d i r ec t ion  of par- 

t i c l e  motion ( l i = v /  /VI). ibe have f o r  the accre t ion  A k  of the  vector  k i n  
t h e  t i m e  i n t e r v a l  A t  

Here m is the t o t a l  pa66 of t h e  p a r t i c l e ,  A t  must be so chosen 

t h a t  the  p a r t i c l e  pass through many i r r e g u l a r i t i e s  and y e t  with a small 

devia t ion  i n  the d i rec t ion .  Ef fec t ing  combinations from (31, and averaging 
with t h e  u t i l i z a t i o n  of (21, ne shall have 

2qAt,  ( (AIc (p )2 )  = - 2q At, sin? 8 (4) 

where 9 and 'P are the  angular coordinates;  8 is counted from the rad ius ;  

CQ is the  azimuthal angle, 
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3. 

U t i l i  zing 
order  moments t o  

t h e  value of the 

these expressions for the  moments, and est imat ing the higher 
be small, w e  shall obtain from the  Markov equation, linking 

d i s t r i b u t i o n  function N(r, 0, 9, t )  at tines t and t + At, 
t h e  k i n e t i c  equation i n  the  Fokker-Planck approximation 

u sin 0 ilN u sin 0 sin cp aN 
at r ae r acp 

ctgq- = dN - + u k grad N - -- - 

( ~ v ~ ~ , ~ 7 V ! ~ ) ~ r d ~  is the  number of p a r t i c l e s  i n  the volume dr, having ve loc i ty  
d i r ec t ions  confined i n  t h e  s o l i d  angle a). 

The energy of t h e  p a r t i c l e  does not vary, f o r  the  field is considered 
s ta t ionary .  The d e t a i l e d  development & the result is available i n  ref. c11. 

SPHERICALLY-SYFIKETRICAL F'LARE.- Let 118 consider at the  outse t  a 

spherically-symmetrical point  flare i n  an i n f i n i t e  uniform medium The kine- 
t i c  equation and the  i n i t i a l  condition then have the  form: 

Moreover, N (r, 8 ,  t )  m u s t  be a per iodicc l  and symmetrical function 

of  e 

(8) 
R ( O )  = N ( O  $- 2n), N ( 0 )  = A'(-0). 

Expanding N by Legendre polynomials 
W 

A'= C Q h ( T ,  t ) P k ( C O S 0 ) ,  
h=O 

w e  s h a l l  obtain for the  coe f f i c i en t s  9 the  chain of equations 

v k  doh-1 v ( k +  3 )  aak+l -- - auk .+----- 
01 21: -1 ar + ~ c + 3  dr 

(9) 



Let  UB write  t h e  f i r s t  two equations 

4, 

The d i f fus ive  approximation is obtained i n  the  case, when ins tead  
of the  second equation of the  system (111, we would write 

aa0 
dr 

2qai = - u-. 

Note t h a t  ha, is the  s p a t i a l  densi ty  of p a r t i c l e s  and lval/3 is 
the  flux, From the  first equation (11) and from (12) we may o b t d n  the dif- 

fusion equation with the  diffus'ion coe f f i c i en t  

D = = U 2 / 6 q .  

However, the  equa l i ty  (12) m i l l  be va l id  if t he  processes a re  s u f f i -  

c i e n t l y  s l o w  and s u f f i c i e n t l y  i so t ropic .  A simple so lu t ion  may be obtained 

in t h e  case, whereby r e j ec t ed  in the system (11) a m  only the  terms contain- 
ing a2, leaving t h e  term aai/dt , t h a t  iS, in the  assumption t h a t  the  pro- 
cesses  are s u f f i c i e n t l y  i so t ropic .  Thus we have the system 

Let us now perform the  Carson-Laplace transformation 

As a result w e  shall obtain 

Limited a t  r + 0 0 ,  the  so lu t ion  of (16) will be 

- c  r 
@=- I- OXP (-; 1342 + 29) ) . 



Tho constant 2 is d e t e r b e d  frcm the condition 

Thue 

Passing from the  image t o  the o r ig ina l ,  we obtain 

Analogously obtained is the expressions f o r  al 

Here 11 is a Eessel function from the imaginary argument of t h e  

i - t h  o rder ;  s=q/v(VZt2-312)”~. The expressions (l9)* (20) determine a. and al 
a t  3t2>W; ~ g = a i = O  at  @t2<3312. For grea t  4 fornulas (191, ( 2 0 )  pass asymp- 
t o t i c a l l y  t o  f o r m l a 6  of  d i f fus ive  apjroximaticn. Graphs of a ana ”1 depend- 
ence on a t  a t  = 3 ( s o l i d  curves) are  p lo t ted  i n  Fig. 1. For comparison 

we brought out a l s o  t h e  values of a, and al i n  d i f fus ive  approxination 
(dashed curves). As may be seen, the main discrepancy iE obtained i n  fluxes. 

Inasmuch as i n  the i n i t i a l  equations we neglected t h e  terms contain- 

0 

ing %, t he  condition of (191, (20) a p 2 l i c a b i l i t y  will be t h e  smallness of a2. 
This quant i ty  may be determined by an approximate f o r m l a  obtained from the 
t h i r d  equation of the system (1C) 

.I l? dUi  1 u 
9 q ,  dr 9 qr 

Subs t i t u t ing  its value according t o  foraula  (2G) i n  place of 9 

ai. a2 -_. _ _  --++- - 

w e  shall have 

The estimate of 9 shorn t h a t  (191, (20) are va l id  through r =  v t / ) / 3  

at q t c 5 .  For grea t  14, these expressions are v a l i d  only f o r  r ( r o (  u t / ) / %  
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a t  t h e  same t i m e ,  t h i s  inequal i ty  is strenghtened w i t h  t h e  increase  of t. 

The d i s t r i b u t i o n  of p a r t i c l e s  a t  ut> r >  u t / l z  is given by the 8-  function. 
This  is t h e  co ro l l a ry  of t h e  unaccounted a2. Therefore,  f o r  the descr ip t ion  
of p a r t i c l e s  found at r > ro, i t  is necessary t o  take onto account 9, 9 
and so for th .  , t h a t  is, in t he  zone r > ro the  p a r t i c l e s  are d i s t r ibu ted  
an iso t ropica l ly .  

- 

,8=20 O 

60 
90" &* I I t c  , 

Fig. 1 Fig. 2 

L e t  us pass now t o  the  question of angular d i s t r i b u t i o n  of p a r t i c l e s  

i n  the  zone r > ro . For the  so lu t ion  of t h i s  problem we s h a l l  s u b s t i t u t e  
the de r iva t ive  i n  respect  t o  8 by f i n i t e  d i f fe rences ,  using the method of 

s t r a i g h t  l i n e s  L21. As a r e s u l t ,  we s h a l l  obtain ins tead  of the equation (6)  
a system of equations i n  p a r t i c a l  der ivat ive of  first order  

1 (W. i 
hz 2h = - (~ i+ i  - + Ni-i) + - ctg fji (Ni+l- Ni-1) 

Here h is  a s t e p ;  Ni = K ( r ,  t ) ;  i = 0, I, 2,. . . ; Ni iS the  mean value of 

the  funct ion N ( r ,  9, t 1, averaced i n  t h e  i n t e r v a l  O i  -- '/&, fji -k ' / h e  

Subsequently, ve shall m,ee the follov in[: a:.:lroximations : inasmuch 

as i n  t he  considered zone the pa r t i c l e s  a re  s t rongly  an iso t ropica l ly  distri- 

buted, we s h a l l  neglect  i n  the  equation (22) t he  t e r m  containing H2; s ince  
the  thickness of the considered zone is l e s s  than  the dis tance t o  the  cen te r  

when t is not t o o  great, we s h a l l  also disregard the spher ic i ty .  

. .  
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On t h e  whole, we have t h e  following eystem: 

Here the  coe f f i c i en t s  are computed at h = 400, eo = 200. If for i n i -  
t i a l  condi t ions we take 

t h e  s o l u t i o n  of the  system has t h e  form 

3,7LTq = Zo (2 ,574-p  - p )  erp [-4,0Gqt - O104L1 
16x256 (25) 

r E = 434 (- - O,72t) 1 
0 

. where No, N 1  = 0 at t 2  < 2. T h i s  so lu t ion  descr ibes  s a t i s f a c t o r i l y  the dis- 

t r i b u t i o n  of p a r t i c l e s  at q t  < 1, when the  v e l o c i t i e s  of t h e  p r inc ipa l  

mass of p a r t i c l e s  are d i r ec t ed  forward. A t  g rea t  4 it is appl icable  only 
for the  outermost pa r t s  of t he  zone r > roo For t h e  inne r  pa r t  of t h i s  
zone i t  is necessary t o  account for t h e  p a r t i c l e s  having d r i f t e d  i n t o  tke 
zone r < ro and having czught up with t h e  zone z > zo again a f t e r  a series 

of s c a t t e r i n g s .  I n  order  t o  take  these p a r t i c l e s  i n t o  account, we shall 

proceed as follows. :;le s h a l l  choose a distance rl, such t h a t  formulas (19) 
and (20) be still va l id ,  and t h a t  at t h e  same t i m e  there  be a s u f f i c i e n t l y  

s t rong  anisotropy i n  t h e  angular d ie t r ibu t ion  of p a r t i c l e s  ( t h a t  is, a. and 

al are comparable). For not too  great  & we may choose f o r  rl ut/1/3. Having 
expressed No and N1 by a, a n d  a l a t  the  point  r = q, we s h a l l  ob ta in  
the boundary conditions f o r  t h e  system ( 2 3 )  : 



a. 

The quan t i t i e s  pi have the  sense of power .of kind-i  p a r t i c l e  60W- 

c e s s  moving w i t h  the ve loc i ty  v/3/2 . Resolving the  system (23) with zero 
i n i t i a l  conditions and boundary conditions ( 2 6 ) ,  =e shall obtain 

Here No and N1 are  determined by formulas (251, the mul t ip l i e r  

r 
the s p h e r i c i t y .  The results of numerical ca lcu la t ions  of time dependence 

of p a r t i c l e  i n t e n s i t y  in the d i rec t ions  20,60,100,180° over distances 

r q  / ar = 1,3, 5 are plo t ted  in Figures 2 - 4. It may be seen from the graphs 
t h a t  for a spherically-symmetrical flare s t rong  anisotropy i n  the angular 
d i s t r i b u t i o n  of p a r t i c l e s  will be observed only at ? / / u  1 at time of onset 
of p a r t i c l e  dens i ty  maximum ( t h a t  is, Io and N1 d i f f e r  subs t an t i a l ly ) .  

-2 being re jec ted .  The mul t ip l ie r  t2 / 1.5 T? approximately accounts f o r  

I .  f 4 ,  
n 5 10 

Fiz. 3 

:g N 
.i 

lg N 
I 

Fig. 4 

AXISYMMETBICAL FLARE.-Let us consider a f l a r e  w i t h  a directed 

e jec t ion .  ?;e s h a l l  assume t h a t  p a r t i c l e s  a r e  e jec ted  at the point r = 0 

along t h a  axis Vl = 0. In t h i s  case the  k i n e t i c  equation has the following 

form sin e aiv sin 0 COS cp a:V 
aq 
-- aN aLv 

- + v c o s e - - v - - + ~  at ar r ae 
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Representing N in the form of series 
W 

we s k l  ob ta in  in t he  d i f fus ive  appro-tion for the  propagation along 

the  coordinate  2 t h e  equation determining bo 

abo ~ ~ i n e  abo - ab0 - -+ u cos 0-- -- - 
at dr  r dO 

The following i n i t i a l  condition must be added t o  the equation ( 3 0 ) :  

alongside w i t h  the  condition of pe r iod ic i ty  with respec t  ta 7 and 0.  

with respect t o  7 does not depend on 8,provided re estimate a l s o  t h a t  i t  

is independent f r o m  1: ( t h a t  is, taking t h e  e f f e c t i v e  average), the var iab le  

Estimating t h a t  u > q ,  re see t h a t  the c o e f i i c i e n t  at the  der iva t ive  

is determined from the remaining i n  the form 

(32) 

Here l ~ r ~ a +  is the solution for a spherically-symmetrical f l a r e ;  vT 
is t h e  e f fec t iv .?  value of the  coef f ic ien t  at t h e  der iva t ive  with respec t  t o  

- - u,, = q r : /  < t u .  

t o  We s h a l l  consider t h e  question as4how the flare's nonspherici ty  can 

manifest  i t s e l f  upon the observation condi t ion of s t r o n g  anisotropy. As may 
be seen from t h e  e a r l i e r  presented graphs, i n  t h e  c a m  of spherically-symmetric 
flare the i n t e n s i t y  r i ses  extremely r ap id ly  i n  the  anisotropic  p a r t  of the 

curve and the  mul t ip l i e r  1 /B, t 
the  shape of t he  curve i n  t h a t  part. I n  F ig .5  we brought out a graph corrobo- 

r a t i n g  t h i s  remark. It i n d i c a t e s  t h e  course of i n t e n s i t y  with t i m e  for r q / u = 3 ,  

can not  inf luence somewhat s u b s t a n t i a l l y  

= 0. The exponential  m u l t i p l i e r  c q )  (--if> 4B,,t) may s h i f t  the maximum t o  
Therefore,  the s t r o n g  ani- the  i s o t r o p i c  region i n  t h e  case when qJ > 4&[. 

sotropy d l 1  be observed only i n  the ca8e when the  observed is loca ted  i n s i d e  

the  cone rq / u 6 1, q2 < 4D,,t. 
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E -  * 

COMP-OB WITH O B S E B V B T I O ~ . -  L e t  us compare the  conclusions 
obtained with the observation data on t he  flare of 4 M a y  1960 brought out 

in c31. The symmetry axis d i rec t ion  of the f l u x  of a r r iv ing  proton8 deviated 

by 500 t o  the w e s t  from t he  d i rec t ion  at the  Sun. Apparently the  p a r t i c l e s  
were l e d  by the l i n e s  of force of a regular sp i r a l - l i ke  f i e l d ;  t h b  is why 

i n  t h e  given case the angle must be counted from the d i r ec t ion  of the  line 
of force  of t he  regular  f i e l d  a t  the given point and not from the radial 

d i r ec t ion ,  as the forrder coincides with t h e  symmetry axis of the flux. 

Taking t h i s  re- i n t o  acco7mt me s h a l l  apply the r e s u l t s  obtained for 
the  radial f i e l d  t o  the  r e a l ,  estimating tha t  o ther  var ia t ions  are immate- 
rial. According t o  data of c33, a s t rong  anisotropy rw- preserved i n  the 
coume of a half-hour a f t e r  onset of p a r t i c l e  dens i ty  maximum. This means, 
first of  all, t ha t  at t i m e  of that  flare, t h e  E a r t h  w a s  loca ted  i n  the 

favorable cone. Secondly, the duration of the s t rong  anisotropy w a s  deter- 

mined by the  durat ion of source's operation, for, as may be seen from the 
above graphs, the durat ion of s t rong  anisotropy does not exceed a few minu- 

t e s  i n  an instantaneous source.  P lo t t ed  i n  Fig. 6 are the  values of inten- 

s i t y  in the d i r ec t ions  of 40 and 600 BB a function of time at q = 2 0 1r3s01, 
r = 1.5 0 d3 cm, 7 = 0. The power of the  source had an exponential depend- 
ence on time exp ( - t / to), where to = 16 min. The values of fluxes observed 

at  the respect ive points  on Ea r th  are plo t ted  by c i r c l e s  and t r i ang le s .  
It may be seen t h a t  the curve brought out descr ibes  s a t i s f a c t o r i l y  the  force 

and the durat ion of the anisotropy. 

. 

to may denote t h e  source(s  operat ion time as well as the  deexcita- 

t i o n  time of the  region of d i f fus ion  in Sun's v ic in i ty .  Let us pause at  the 
second var ian t .  The deexci ta t ion time of a sphere of radiue B, f i l l e d  with 
a medium with d i f fus ion  coe f f i c i en t  DR, is approximately equal t o  I?/%. 

Assuming R .I 1 0 R o  - 7 . l&'cnl and os t imat ing  the deexci ta t ion  time t o  be 
equal t o  1 6  re+n., re s h a l l  ob ta in  Da 3 5 10 2o cm2.eec. For t h e  f a r t h e r  
p a r t s  of the in t e rp l ane ta ry  space the d i f fus ion  coe f f i c i en t  is equal t o  

the  near-solar  d i f fus ion  region is sharp ly  outlined. It 16 mre plaueibae 

t o  pos tu la te  a smooth va r i a t ion  of the d i f fae ion  coe f f i c i en t  as the dis tance 
from the  Sun varies .  In t h i s  case D R b  a c e r t a i n  e f f e c t i v e  value of the 

- 5 cm2eec. Obviously i t  iS not indispensable t o  es t imate  t h a t  DA 
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diffusion c o e f f i c i e n t  at S3W.l distances  from t he  Sua, whereas DA is its 
mean value at more remote dis tances ,  through the  Earth ' 6  orb i t .  Note t h a t  
inasmuch as t h e  anisotropy region uaa i nves t iga t ed  by a curve, the  medium 
beyond the  Earth 's  o r b i t  d id  not p r a c t i c a l l y  affect the  values of t h e  para- 

meters being determined. The d i f fus ion  coefficient,determined over the drop- 

ping p a r t  o f  t h e  curve, refers mainly t o  the space beyond the  Earth 's  o r b i t .  
According t o  t h e  data of C41, it  is equal t o  3 1s2 c d ~ s e c .  Therefore, 

a t  r < l  a.u. t he  d i f fus ion  coe f f i c i en t  rises rap id ly  with t h e  d i s tance  
(approximately 88 9 >, W h i l e  at I > 1 a.u. i t  is near ly  c o ~ ~ t a n t .  The last 
circumstancemay be e x p l d n e d  by t h e  in f luence  of t he  regular f i e l d ,  which 
beyond the Ear th ' s  o r b i t  becomes e s s e n t i a l l y  azimuthal . 

14 N 
10 1 Considering the value of t h e  m e a n  

square of i r regular  f i e l d ' s  i n t e n s i t y  aa 
I 

=g. 5 Fig. 6 

r a c t e r i s t i c  dimension of the irregularit ies over which the r e l a t i v i s t i c  
protone are  sca t t e red .  Assuming *loo5 gauss, we obtain a = 
= 3 1010cm. 

- db2 II 3 
The fact t h a t  o the r  flares do not i n d i c a t e  such a s t rong  anisotropy, 

even those which had heliocoordinates nearly i d e n t i c a l  t o  those of t he  flare 
of 4 May 1960, implies  t h a t  the span of t h e  favorable cone does not exceed 
10-200.  

I n  conclusion we  s h a l l  formulate the  propagation p a t t e r n  of high- 
energy s o l a r  protons. N e a r  t he  Sun, t he  dimension of i r r e g u l a r i t i e s  are 

apparent ly  greater than the Larmor radius, and the  propagation process is 
represented by random d r i f t s ;  h e r e ,  the  d i f fus ive  approximation may be 
appl ied.  A t  dis tances  of s eve ra l  tens o f  solar radii t h e  e f f e c t i v e  free 

path becomes comparable with the dis tance t o  t he  center  and t h i s  is why 

the  d i f f u s i o n  approximation is here inappl icable ;  the Larmor radius becomes 
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greater than the  c h a r a c t e r i s t i c  dimension of i r r e g u l a r i t i e s  and p a r t i c l e s  

scat ter  over a Small angle.  Inasmuch 86 the  e f f e c t i v e  free path remains 
constant,  t h e  diffusion regime s e t t l e s  again during a time of  the  order  of 

the t i m e  of  t he  free path.  

Contract I o  .IUAS->9299 
Consultants and Designers, Inc. 

Translated by ANDEE L.BRICHA" 

Arlington, Virginia  on 1 4 -  15 May 1966 

R E F E R E N C E S  

C11.- S. CHANDRASEECBR. - Stokhasticheskiye problem v f i z i k e  i astronomii, 
(Stochastic problems in physics and I L ,  1947. 

E23 .- I. S BEREZII ,  I. P. WIDK0V.- PriblizhennyJre vychisleniya (Approximate 

c31.- K.G.McCRAGKEN.- J.Geophy6. Res., 67, No. 2, 435, 1962, 

astronomy 1 

Calculat ions , T .I1 Fizmatgiz, 1959. 

C4J.- A.N.  CHARAKHCHPAN, V.F.TULINOV, T.N,CHA.RAKHCBYAMo- ZhETF. 41, 735,1961. 

I n s t i t u t e  of Phy8iCS 
of the  USSR Ac. of  Sc. 

i n  the name 
of P. I, Lebedev 

Manuscript re ceive d 
on 22 February 1965. 



13 ST - PF-SP-10487 ( 1 4 ~ ~ -  60 cc 1 16 M a g  1966 

GQDDAXD SPACE Poco 

100 
110 
400 
61 0 
611 

612 

613 

614 

615 

640 

630 
2 52 
2 56 

DISTRIBUTION 

N A S A  H Q S  

SS NE!E;p;L, NAUGLX 
SG m a  

ROm 
SMI!l!H 
SCHARDT 
DUBIN 

m o w s  
HIPSBZR 
EOROWITZ 

G I L L  

SL LIDDEL 

SM NSTER 

FIR KmZZWJ3G 
BllR NEILL 
dTSS - T 
W X  SllllEET 

OTHER CER?!WS 

A N E S  R C 

so- 
LI3RA€€x 

LAHGLEY R C 

160 ADAHION 
116 K A T Z O ~  
185 &WBERWAX 
J P L  
SmER 
BEUGrnAUER 
WYCROFF 
W I V  e IOWA 

VAN ALLEW 
ucm- 
m c o x  
U C L A  

COLEMAN 

- 


